Solution Manual for Advanced Mechanics and General Relativity

Joel Franklin
Draft date August 25, 2010
Chapter 1

Newtonian Gravity

Problem 1.1
From the Euler-Lagrange equations of motion:
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0
\] (1.1)
we have
\[
m \ddot{x} + A = 0 \longrightarrow m \ddot{x} = -A,
\] (1.2)
and this corresponds to motion under the influence of a constant force \(A \) (for example, \(A = mg \)). The constant \(B \) provides an energy offset to the potential \(U = A x + B \), and has no dynamical effect.

Problem 1.2
a. For \(x(t) = \frac{x_f t}{T} \), we have:
\[
S = \int_0^T \frac{1}{2} m \dot{x}^2 \, dt = \int_0^T \frac{1}{2} m \left(\frac{x_f}{T} \right)^2 \, dt = \frac{1}{2} m \frac{x_f^2}{T}.
\] (1.3)

b. For \(x(t) = \frac{x_f t}{T} + \sum_{j=1}^{\infty} \alpha_j \sin \left(\frac{j \pi t}{T} \right) \) the action is:
\[
S = \frac{1}{2} m \frac{x_f^2}{T} + \frac{1}{2} m \int_0^T \left(\sum_{j=1}^{\infty} \alpha_j \frac{j \pi}{T} \cos \left(\frac{j \pi t}{T} \right) \right) \left(\sum_{k=1}^{\infty} \alpha_k \frac{k \pi}{T} \cos \left(\frac{k \pi t}{T} \right) \right) \, dt.
\] (1.4)

Noting that
\[
\int_0^T \cos \left(\frac{j \pi t}{T} \right) \cos \left(\frac{k \pi t}{T} \right) \, dt = \frac{1}{2} T \delta_{jk},
\] (1.5)
the sums in the second term of S collapse:

$$S = \frac{1}{2} m \frac{x_j^2}{T} + \frac{1}{2} m \sum_{j=1}^{\infty} \frac{1}{2} T \left(\frac{j \pi}{T} \right)^2 \alpha_j^2$$

$$= \frac{1}{2} m \left(\frac{x_j^2}{T} + \frac{1}{2} T \sum_{j=1}^{\infty} \left(\frac{j \pi}{T} \right)^2 \alpha_j^2 \right).$$

(1.6)

The first term is the value of S we got in part a. The second term, assuming it exists as an infinite sum, is a sum of positive quantities, so must itself be positive, and this action is larger than value in (1.3) for any non-zero α_j.

Problem 1.3

The Lagrangian, written in cylindrical coordinates, is:

$$L = \frac{1}{2} m \left(s^2 + s^2 \dot{\phi}^2 + \dot{z}^2 \right) - U(s).$$

(1.7)

From the Euler-Lagrange equations, we have:

$$0 = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \right) - \frac{\partial L}{\partial s} = \frac{d}{dt} (m \dot{s}) - m \ddot{s} - m s \ddot{\phi}^2 + \frac{dU}{ds} = m \ddot{s} - m s \ddot{\phi}^2 + \frac{dU}{ds}$$

(1.8)

so that

$$m \ddot{s} = m s \ddot{\phi}^2 - \frac{dU}{ds}.$$

(1.9)

For ϕ:

$$0 = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = \frac{d}{dt} \left(m s^2 \dot{\phi} \right) = m s^2 \ddot{\phi} + 2 m s \dot{\phi}$$

(1.10)

or

$$m s^2 \ddot{\phi} = -2 m s \dot{\phi}.$$

(1.11)

Finally, for z:

$$0 = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{z}} \right) - \frac{\partial L}{\partial z} = \frac{d}{dt} \left(m \dot{z} \right) = m \ddot{z}$$

(1.12)

so that

$$m \ddot{z} = 0.$$

(1.13)
If we work from Newton’s second law in Cartesian coordinates, then we must use:

\[
x = s \cos \phi \quad \rightarrow \quad \ddot{x} = \cos \phi \dddot{s} - s \left(\cos \phi \dot{\phi}^2 + \sin \phi \dddot{\phi} \right) - 2 \sin \phi \dddot{s} \ddot{\phi} \\
y = s \sin \phi \quad \rightarrow \quad \ddot{y} = \sin \phi \dddot{s} + s \left(-\sin \phi \dot{\phi}^2 + \cos \phi \dddot{\phi} \right) + 2 \cos \phi \dddot{s} \ddot{\phi} \\
z = z \quad \rightarrow \quad \ddot{z} = \dddot{z}
\]

Together with Newton’s second law: \(ma = -\nabla U(\sqrt{x^2 + y^2}) \), in components:

\[
m \ddot{x} = -\frac{dU}{ds} \frac{x}{\sqrt{x^2 + y^2}} \\
m \ddot{y} = -\frac{dU}{ds} \frac{y}{\sqrt{x^2 + y^2}} \\
m \ddot{z} = 0
\]

Using the definitions, and derivatives in (1.14), we have:

\[
m \cos \phi \dddot{s} - m s \left(\cos \phi \dot{\phi}^2 + \sin \phi \dddot{\phi} \right) - 2 m \sin \phi \dddot{s} \ddot{\phi} = -\frac{dU}{ds} \cos \phi \\
m \sin \phi \dddot{s} + m s \left(-\sin \phi \dot{\phi}^2 + \cos \phi \dddot{\phi} \right) + 2 m \cos \phi \dddot{s} \ddot{\phi} = -\frac{dU}{ds} \sin \phi
\]

and if we multiply the top two equations by \(\sin \phi \) and \(\cos \phi \) respectively, we get:

\[
m \cos \phi \sin \phi \dddot{s} - m s \left(\cos \phi \sin \phi \dot{\phi}^2 + \sin^2 \phi \dddot{\phi} \right) - 2 m \sin^2 \phi \dddot{s} \ddot{\phi} = -\frac{dU}{ds} \cos \phi \sin \phi \\
m \sin \phi \cos \phi \dddot{s} + m s \left(-\sin \phi \cos \phi \dot{\phi}^2 + \cos^2 \phi \dddot{\phi} \right) + 2 m \cos^2 \phi \dddot{s} \ddot{\phi} = -\frac{dU}{ds} \sin \phi \cos \phi
\]

Subtracting the top from the bottom gives:

\[
m s \dddot{\phi} + 2 m \dddot{s} \ddot{\phi} = 0. \tag{1.18}
\]

Using this equation, solved for \(\dddot{\phi} \), in the top equation of (1.16) gives

\[
m \cos \phi \dddot{s} - m s \cos \phi \dot{\phi}^2 + 2 m \sin \phi \dddot{s} \dddot{\phi} - 2 m \sin \phi \dddot{s} \ddot{\phi} = -\frac{dU}{ds} \cos \phi \tag{1.19}
\]

from which we obtain

\[
m \dddot{s} - m s \dot{\phi}^2 = -\frac{dU}{ds}. \tag{1.20}
\]
Problem 1.4
Consider the Lagrangian for a central potential written in Cartesian coordinates:

\[L = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - U(\sqrt{x^2 + y^2 + z^2}). \]

(1.21)

To transform from Cartesian to cylindrical coordinates, we employ:

\[x = s \cos(\phi), \quad y = s \sin(\phi), \quad \text{and} \quad z = z, \]

(1.22)

and,

\[\dot{x} = \dot{s} \cos(\phi) - s \sin(\phi) \dot{\phi}, \quad \text{and} \quad \dot{y} = \dot{s} \sin(\phi) + s \cos(\phi) \dot{\phi}. \]

(1.23)

So, in particular,

\[\dot{x}^2 = \cos^2(\phi) \dot{s}^2 - 2s \sin(\phi) \cos(\phi) \dot{s} \dot{\phi} + s^2 \sin^2(\phi) \dot{\phi}^2 \]

and

\[\dot{y}^2 = \sin^2(\phi) \dot{s}^2 + 2s \sin(\phi) \cos(\phi) \dot{s} \dot{\phi} + s^2 \cos^2(\phi) \dot{\phi}^2. \]

(1.24)

Evidently, the kinetic term of the Lagrangian transforms via:

\[\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{s}^2 + s^2 \dot{\phi}^2 + \dot{z}^2, \]

(1.25)

and the potential terms transforms via:

\[x^2 + y^2 + z^2 = s^2 + z^2. \]

(1.26)

So the Lagrangian for a central potential, written in cylindrical coordinates, is

\[L = \frac{1}{2} m \left(\dot{s}^2 + s^2 \dot{\phi}^2 + \dot{z}^2 \right) - U\left(\sqrt{s^2 + z^2} \right). \]

(1.27)

Setting \(x^1 = s, \ x^2 = \phi, \) and \(x^3 = z, \) the metric associated with cylindrical coordinates must be:

\[g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & s^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]

(1.28)

Problem 1.5
a. Consider the equation of motion:

\[m g_{\alpha \nu} \ddot{x}^{\nu} + \frac{1}{2} m \dot{x}^{\nu} \dot{x}^{\gamma} \left(\frac{\partial g_{\alpha \nu}}{\partial x^{\gamma}} + \frac{\partial g_{\alpha \gamma}}{\partial x^{\nu}} - \frac{\partial g_{\gamma \nu}}{\partial x^{\alpha}} \right) = - \frac{\partial U}{\partial x^{\alpha}}. \] (1.29)

For \(\alpha = 1 \), corresponding to the \(r \) component, we have:

\[m g_{1 \nu} \ddot{x}^{\nu} + \frac{1}{2} m \dot{x}^{\nu} \dot{x}^{\gamma} \left(\frac{\partial g_{1 \nu}}{\partial x^{\gamma}} + \frac{\partial g_{1 \gamma}}{\partial x^{\nu}} - \frac{\partial g_{\gamma \nu}}{\partial x^{1}} \right) = - \frac{\partial U}{\partial x^{1}}. \] (1.30)

The metric, in spherical coordinates, is

\[g_{\mu \nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}, \] (1.31)

and the only non-zero terms are \(g_{11}, g_{22}, \) and \(g_{33} \). So, the \(r \) component of the equation of motion now reads:

\[m \ddot{x}^{1} + \frac{1}{2} m \left(\ddot{x}^{2} \dot{x}^{2} \frac{\partial g_{22}}{\partial x^{1}} - \dot{x}^{2} \dot{x}^{3} \frac{\partial g_{33}}{\partial x^{1}} \right) = - \frac{\partial U}{\partial x^{1}}, \] (1.32)

or, using \(x^1 = r, x^2 = \theta, \) and \(x^3 = \phi, \)

\[m \ddot{r} + \frac{1}{2} m \left(-\dot{\theta}^2 2r - \dot{\phi}^2 2r \sin^2 \theta \right) = - \frac{\partial U}{\partial r}. \] (1.33)

So,

\[m \ddot{r} - \dot{r} \dot{\theta}^2 + r \sin^2 \theta \dot{\phi}^2 = - \frac{\partial U}{\partial r}. \] (1.34)

b. Starting from

\[L = \frac{1}{2} m \left(\dot{r}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - U(r), \] (1.35)

we have:

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial r} = 0, \] (1.36)

or with \(L \) inserted,

\[\frac{d}{dt} (m \ddot{r}) - \frac{1}{2} m \left(2r \dot{\theta}^2 + 2r \sin^2 \theta \dot{\phi}^2 \right) + \frac{\partial U}{\partial r} = 0. \] (1.37)

So, just as in part a,

\[m \ddot{r} - \dot{r} \dot{\theta}^2 + r \sin^2 \theta \dot{\phi}^2 = - \frac{\partial U}{\partial r}. \] (1.38)
CHAPTER 1. NEWTONIAN GRAVITY

Problem 1.6

The two-dimensional case suffices to show the pattern:

\[
\mathbf{A} \mathbf{x} = \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} A^{11}x_1 + A^{12}x_2 \\ A^{21}x_1 + A^{22}x_2 \end{pmatrix} = \begin{pmatrix} A^{1j}x_j \\ A^{2j}x_j \end{pmatrix},
\]

so \(\mathbf{A} \mathbf{x} = A^{ij} x_j \). Similarly,

\[
x^T \mathbf{A} = (x_1 \ x_2) \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix} = \begin{pmatrix} x_1A^{11} + x_2A^{21} \\ x_1A^{12} + x_2A^{22} \end{pmatrix} = \begin{pmatrix} A^{j1}x_j \\ A^{j2}x_j \end{pmatrix},
\]

so \(x^T \mathbf{A} = A^{ji} x_j \).

Problem 1.7

a. Break up \(T_{\mu \nu} \) into pieces:

\[
T_{\mu \nu} = \frac{1}{2} (T_{\mu \nu} + T_{\nu \mu}) + \frac{1}{2} (T_{\mu \nu} - T_{\nu \mu}) \tag{1.41}
\]

and we can verify:

\[
S_{\nu \mu} = \frac{1}{2} (T_{\nu \mu} + T_{\mu \nu}) = S_{\mu \nu}
\]

\[
A_{\nu \mu} = \frac{1}{2} (T_{\nu \mu} - T_{\mu \nu}) = -A_{\mu \nu}. \tag{1.42}
\]

b. We have:

\[
T_{\mu \nu} Q^{\mu \nu} = S_{\mu \nu} Q^{\mu \nu} + A_{\mu \nu} Q^{\mu \nu}. \tag{1.43}
\]

But,

\[
A_{\mu \nu} Q^{\mu \nu} = -A_{\nu \mu} Q^{\mu \nu} = -A_{\nu \mu} Q^{\mu \nu} = -A_{\mu \nu} Q^{\mu \nu} \implies A_{\mu \nu} Q^{\mu \nu} = 0. \tag{1.44}
\]

So,

\[
T_{\mu \nu} Q^{\mu \nu} = S_{\mu \nu} Q^{\mu \nu}. \tag{1.45}
\]

Similarly,

\[
T_{\mu \nu} P^{\mu \nu} = S_{\mu \nu} P^{\mu \nu} + A_{\mu \nu} P^{\mu \nu} = A_{\mu \nu} P^{\mu \nu}. \tag{1.46}
\]
c. Let \(Q^{\nu\gamma} \equiv \dot{x}^\nu \dot{x}^\gamma \), a symmetric tensor, and

\[
T_{\alpha\nu\gamma} = \frac{\partial g_{\alpha\nu}}{\partial x^\gamma} - \frac{1}{2} \frac{\partial g_{\alpha\nu}}{\partial x^\alpha}.
\]

(1.47)

From part b, \(Q^{\nu\gamma} T_{\alpha\nu\gamma} = Q^{\nu\gamma} S_{\alpha\nu\gamma} \), where \(S_{\alpha\nu\gamma} \) is the portion of \(T_{\alpha\nu\gamma} \) symmetric under \(\nu \leftrightarrow \gamma \) interchange. From part a,

\[
S_{\alpha\nu\gamma} = \frac{1}{2} (T_{\alpha\nu\gamma} + T_{\alpha\gamma\nu})
\]

\[
= \frac{1}{2} \left(\frac{\partial g_{\alpha\nu}}{\partial x^\gamma} - \frac{1}{2} \frac{\partial g_{\alpha\nu}}{\partial x^\alpha} + \frac{\partial g_{\alpha\gamma}}{\partial x^\nu} - \frac{1}{2} \frac{\partial g_{\alpha\gamma}}{\partial x^\alpha} \right),
\]

and since \(g_{\gamma\nu} = g_{\nu\gamma} \),

\[
= \frac{1}{2} \left(\frac{\partial g_{\alpha\nu}}{\partial x^\gamma} + \frac{\partial g_{\alpha\gamma}}{\partial x^\nu} - \frac{\partial g_{\nu\gamma}}{\partial x^\alpha} \right).
\]

(1.48)

Hence,

\[
\dot{x}^\nu \dot{x}^\gamma \left(\frac{\partial g_{\alpha\nu}}{\partial x^\gamma} - \frac{1}{2} \frac{\partial g_{\nu\gamma}}{\partial x^\alpha} \right) = \frac{1}{2} \dot{x}^\nu \dot{x}^\gamma \left(\frac{\partial g_{\alpha\nu}}{\partial x^\gamma} + \frac{\partial g_{\alpha\gamma}}{\partial x^\nu} - \frac{\partial g_{\nu\gamma}}{\partial x^\alpha} \right).
\]

(1.49)

Problem 1.8

a. We cannot use \(\rho(\phi) \) or \(r(\phi) \) for purely radial motion since in the case of, for example, infall along the \(\hat{y} \) axis, \(\phi = \pi/2 \), a constant, leaving no varying parameter to describe the evolution of \(r \).

b. We must go back to the temporally parameterized Lagrangian:

\[
L = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) - U(r).
\]

(1.50)

Rather than developing the equations of motion directly from \(L \), we will work this time from the Hamiltonian \(H \) (which is numerically equivalent to the total energy \(E \)) and its conservation; we have

\[
H = E = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) + U(r).
\]

(1.51)

If we set \(\phi = 0 \), so the radial infall occurs along the \(\hat{x} \) axis (say), then

\[
E = \frac{1}{2} m r^2 - \frac{G M m}{r}.
\]

(1.52)
CHAPTER 1. NEWTONIAN GRAVITY

We start from spatial infinity at rest, \(r(-\infty) = \infty \) and \(\dot{r}(-\infty) = 0 \), so the total energy for this trajectory is (and will remain) \(E = 0 \). We are left to solve:

\[
\dot{r}^2 = \frac{2GM}{r} \implies \dot{r} = -\sqrt{\frac{2GM}{r}}. \tag{1.53}
\]

To solve, we separate variables and integrate with respect to \(t \). On the left:

\[
\int_0^t \sqrt{\dot{r} \dot{t}} \, dt = \int_R^{r(t)} \sqrt{r} \, dr = \frac{2}{3} \left(r(t)^{3/2} - R^{3/2} \right), \tag{1.54}
\]

and on the right,

\[
- \int_0^t \sqrt{2MG} \, dt = -\sqrt{2MG} t. \tag{1.55}
\]

Equating and solving for \(r(t) \) gives our solution for radial infall:

\[
r(t) = \left(R^{3/2} - 3\sqrt{\frac{MG}{2}} t \right)^{2/3}. \tag{1.56}
\]

Problem 1.9

a. For

\[
L = \frac{1}{2} \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) + \frac{M}{r}, \tag{1.57}
\]

we have the Hamiltonian:

\[
H = \frac{1}{2} \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) - \frac{M}{r}. \tag{1.58}
\]

Using the \(\phi \) component of the equation of motion:

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} = 0 \implies r^2 \dot{\phi} = J_z, \tag{1.59}
\]

we can rewrite \(H \) as:

\[
H = \frac{1}{2} \dot{r}^2 + \frac{1}{2} r^2 \frac{J_z^2}{r^4} - \frac{M}{r}. \tag{1.60}
\]

Then identify the last two terms as the effective potential:

\[
U_{\text{eff}}(r) = \frac{1}{2} \frac{J_z^2}{r^2} - \frac{M}{r}. \tag{1.61}
\]
A sketch is shown in Figure 1.1. This has a zero at

$$U_{\text{eff}} = 0 \implies \frac{1}{2} \frac{J_z^2}{r_0^2} = \frac{M}{r_0} \implies r_0 = \frac{J_z^2}{2M}. \quad (1.62)$$

and a minimum at

$$\frac{\partial U_{\text{eff}}}{\partial r} = 0 \implies -\frac{J_z^2}{r_{\text{min}}^3} + \frac{M}{r_{\text{min}}^2} = 0 \implies r_{\text{min}} = \frac{J_z^2}{M}. \quad (1.63)$$

b. First,

$$U_{\text{min}} = U_{\text{eff}}(J_z^2/M) = \frac{1}{2} \frac{M^2}{J_z^2} - \frac{M^2}{J_z^2} = -\frac{1}{2} \frac{M^2}{J_z^2}. \quad (1.64)$$

Then, returning to $H = E = U_{\text{min}},$

$$-\frac{1}{2} \frac{M^2}{J_z^2} = \frac{1}{2} r^2 + \frac{1}{2} \frac{r^2 J_z^2}{r^4} - \frac{M}{r} \implies r^2 = 0. \quad (1.65)$$

We are left with a quadratic in r:

$$\frac{1}{2} J_z^2 - Mr + \frac{1}{2} \frac{M^2}{J_z^2} r^2 = 0, \quad (1.66)$$

and the solutions are:

$$r = \frac{M \pm \sqrt{M^2 - 4(J_z^2/2)(M^2/2J_z^2)}}{2(M^2/2J_z^2)} = \frac{J_z^2}{M} = r_{\text{min}}. \quad (1.67)$$
So the orbit is a circle with radius \(r = J_z^2 / M \).

Problem 1.10

a. For

\[
 r(\phi) = \frac{p}{1 + e \cos \phi},
\]

we have

\[
\begin{array}{c|c}
 (p, e) = (1, 1/2): & (p, e) = (1/2, 1/2): & (p, e) = (1, 1/4): \\
 \phi & r(\phi) & \phi & r(\phi) & \phi & r(\phi) \\
 0 & \frac{1}{1+1/2} = 2/3 & 0 & \frac{1/2}{1+1/2} = 1/3 & 0 & \frac{1}{1+1/4} = 4/5 \\
 \pi/2 & 1 & \pi/2 & 1/2 & \pi/2 & 1 \\
 \pi & \frac{1}{1-1/2} = 2 & \pi & \frac{1/2}{1-1/2} = 1 & \pi & \frac{1}{1-1/4} = 4/3
\end{array}
\]

Sketches are shown in Figure 1.2. A circle of radius \(R \) has \((p, e) = (R, 0)\).

![Figure 1.2: Sketch of ellipses defined by \(p \) and \(e \).](image)

b. The closest and furthest approach correspond to \(\phi = 0 \) and \(\phi = \pi \), respectively. So,

\[
 r_p = \frac{p}{1 + e} \quad \text{and} \quad r_a = \frac{p}{1 - e},
\]

(1.69)
and then,

\[p = (1 + e) r_p \implies r_a = \frac{1 + e}{1 - e} r_p \implies r_a - e(r_a + r_p) = r_p. \quad (1.70) \]

Hence,

\[e = \frac{r_a - r_p}{r_a + r_p} \quad \text{and} \quad p = (1 + e) r_p = \frac{2r_a r_p}{r_a + r_p}. \quad (1.71) \]

c. We have:

\[r(\phi) = \frac{1}{M/J_z^2 + \alpha \cos \phi} = \frac{J_z^2 / M}{1 + (\alpha J_z^2 / M) \cos \phi}. \quad (1.72) \]

So here,

\[e = \frac{\alpha J_z^2}{M} \quad \text{and} \quad p = \frac{J_z^2}{M}. \quad (1.73) \]

Then, using the result from part b,

\[\frac{r_a - r_p}{r_a + r_p} = \frac{\alpha J_z^2}{M} = \alpha \left(\frac{2r_a r_p}{r_a + r_p} \right) \implies \alpha = \frac{r_a - r_p}{2r_a r_p}, \quad (1.74) \]

and

\[\frac{2r_a r_p}{r_a + r_p} = \frac{J_z^2}{M} \implies J_z = \pm \sqrt{\frac{2Mr_a r_p}{r_a + r_b}}. \quad (1.75) \]

Problem 1.11

a. For the transformation: \(x \to \bar{x} = \bar{x}(x) \), the coordinate differential for \(\bar{x} \) is, by the chain rule:

\[dx^\alpha = \frac{\partial \bar{x}^\alpha}{\partial x^\beta} dx^\beta. \quad (1.76) \]

So, \(dx \) transforms as a contravariant 1st rank tensor.

A scalar \(\phi(x) \) responds to \(x \to \bar{x} \) by transcription (i.e. not at all):

\[\bar{\phi}(\bar{x}) = \phi(x(\bar{x})). \quad (1.77) \]

The derivatives of \(\bar{\phi}(\bar{x}) \) with respect to \(\bar{x} \) (forming the gradient) can be written in terms of the derivatives of \(\phi(x) \) with respect to \(x \):

\[\frac{\partial \bar{\phi}}{\partial \bar{x}^\mu} = \frac{\partial \phi}{\partial x^\alpha} \frac{\partial x^\alpha}{\partial \bar{x}^\mu}, \quad (1.78) \]
or using $\phi_{,\mu} \equiv \frac{\partial \phi}{\partial x^\mu}$,

$$\phi_{,\mu} = \frac{\partial x^\alpha}{\partial \bar{x}^\mu} \phi_{,\alpha}.$$ \hfill (1.79)

So, $\phi_{,\mu}$ transforms as a covariant 1st rank tensor.

b. For:

$$x = s \cos \phi, \quad dx = ds \cos \phi - s \sin \phi \, d\phi$$ \hfill (1.80)
$$y = s \sin \phi, \quad dy = ds \sin \phi + s \cos \phi \, d\phi,$$ \hfill (1.81)

the matrix relation between differentials is:

$$\begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} \cos \phi & -s \sin \phi \\ \sin \phi & s \cos \phi \end{pmatrix} \begin{pmatrix} ds \\ d\phi \end{pmatrix},$$

$$\approx \Lambda.$$ \hfill (1.82)

or going the other direction,

$$\begin{pmatrix} ds \\ d\phi \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\frac{1}{s} \sin \phi & \frac{1}{s} \cos \phi \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix},$$

$$\approx \Lambda^{-1}.$$ \hfill (1.83)

From the coordinate differential transformation (contravariant 1st rank tensor) we expect:

$$dx^\alpha = \frac{\partial x^\alpha}{\partial \bar{x}^\beta} dx^\beta.$$ \hfill (1.84)

But is $\frac{\partial x^\alpha}{\partial \bar{x}^\beta}$ really the object representing Λ^{-1}? To form $\frac{\partial x^\alpha}{\partial \bar{x}^\beta}$, we need $\bar{x}^\alpha(x)$:

$$s = \sqrt{x^2 + y^2}, \quad \text{and} \quad \phi = \tan^{-1}(y/x).$$ \hfill (1.85)

Then,

$$\frac{\partial s}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial s}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}, \quad \frac{\partial \phi}{\partial x} = -\frac{y}{x^2 + y^2}, \quad \frac{\partial \phi}{\partial y} = \frac{x}{x^2 + y^2}.$$ \hfill (1.86)

To make the comparison with Λ^{-1}, we need to express $\frac{\partial x^\alpha}{\partial \bar{x}^\beta}$, i.e. the derivatives above, in terms of s and ϕ rather than x and y. Doing so, we find that

$$\frac{\partial x^\alpha}{\partial \bar{x}^\beta} \left(\begin{array}{c} \frac{\partial s}{\partial x} \\ \frac{\partial s}{\partial \phi} \\ \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \end{array} \right) = \begin{pmatrix} \cos \phi & \sin \phi \\ -\frac{1}{s} \sin \phi & \frac{1}{s} \cos \phi \end{pmatrix} = \Lambda^{-1}.$$ \hfill (1.87)
c. For \(\psi = kxy \), we have:

\[
\psi_{,\mu} = \begin{pmatrix}
\frac{\partial \psi}{\partial x}
\frac{\partial \psi}{\partial y}
\end{pmatrix}
= \begin{pmatrix}
k y
k x
\end{pmatrix}.
\] (1.88)

Or, using \(x = s \cos \phi \) and \(y = s \sin \phi \), \(\tilde{\psi} = ks^2 \cos \phi \sin \phi \), and we have:

\[
\tilde{\psi}_{,\mu} = \begin{pmatrix}
\frac{\partial \tilde{\psi}}{\partial x}
\frac{\partial \tilde{\psi}}{\partial y}
\end{pmatrix}
= \begin{pmatrix}
2ks \cos \phi \sin \phi
k s^2 (-\sin^2 \phi + \cos^2 \phi)
\end{pmatrix}.
\] (1.89)

To check that \(\tilde{\psi}_{,\mu} = \frac{\partial x^\alpha}{\partial \bar{x}^\mu} \psi_{,\alpha} \), we must express \(\tilde{\psi}_{,\mu} \) in terms of \(s \) and \(\phi \):

\[
\tilde{\psi}_{,\mu}(s, \phi) = \begin{pmatrix}
k s \sin \phi
k s \cos \phi
\end{pmatrix}.
\] (1.90)

Then, the right side of the covariant transformation rule reads:

\[
\frac{\partial x^\alpha}{\partial \bar{x}^\mu} \psi_{,\alpha} = \begin{pmatrix}
\frac{\partial x}{\partial x^1} & \frac{\partial x}{\partial x^2}
\frac{\partial y}{\partial x^1} & \frac{\partial y}{\partial x^2}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial \psi}{\partial x^1}
\frac{\partial \psi}{\partial x^2}
\end{pmatrix}
= \begin{pmatrix}
\cos \psi (ks \sin \phi) + \sin \phi (ks \cos \phi)
- \sin \phi (ks \sin \phi) + \cos \phi (ks \cos \phi)
\end{pmatrix}
= \begin{pmatrix}
2ks \cos \phi \sin \phi
k s^2 (-\sin^2 \phi + \cos^2 \phi)
\end{pmatrix},
\] (1.91)

precisely \(\tilde{\psi}_{,\mu} \) from above.

Problem 1.12

For \(x^1 = x \), \(x^2 = y \), \(\bar{x}^1 = s \), and \(\bar{x}^2 = \phi \), with \(x = s \cos \phi \), \(y = s \sin \phi \), or \(s = \sqrt{x^2 + y^2} \), \(\phi = \tan^{-1}(y/x) \), we have:

\[
\frac{\partial x^\alpha}{\partial \bar{x}^\mu} \equiv \begin{pmatrix}
\frac{\partial x}{\partial \bar{x}^1} & \frac{\partial x}{\partial \bar{x}^2}
\frac{\partial y}{\partial \bar{x}^1} & \frac{\partial y}{\partial \bar{x}^2}
\end{pmatrix}
= \begin{pmatrix}
\cos \phi & - s \sin \phi
-s \sin \phi & s \cos \phi
\end{pmatrix}
= \begin{pmatrix}
\frac{x}{\sqrt{x^2 + y^2}} & -y
-y & \frac{y}{\sqrt{x^2 + y^2}}
\end{pmatrix}
\] (1.92)

in terms of \(\bar{x}^\alpha \)

and,

\[
\frac{\partial x^\alpha}{\partial \bar{x}^\mu} = \begin{pmatrix}
\frac{\partial x}{\partial \bar{x}^1} & \frac{\partial x}{\partial \bar{x}^2}
\frac{\partial y}{\partial \bar{x}^1} & \frac{\partial y}{\partial \bar{x}^2}
\end{pmatrix}
= \begin{pmatrix}
\sqrt{x^2 + y^2} & \frac{x}{\sqrt{x^2 + y^2}}
\frac{y}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}}
\end{pmatrix}
= \begin{pmatrix}
\cos \phi & \sin \phi
-s \sin \phi & s \cos \phi
\end{pmatrix}
\] (1.93)

in terms of \(x^\alpha \).
Now, in \(x^\alpha \) coordinates:

\[
\frac{\partial x^\alpha}{\partial \bar{x}^\beta} \frac{\partial \bar{x}^\beta}{\partial x^\gamma} = \begin{pmatrix}
\frac{x}{\sqrt{x^2+y^2}} & -y & x \\
\frac{y}{\sqrt{x^2+y^2}} & \frac{y}{\sqrt{x^2+y^2}} & \frac{y}{x} \\
x & \frac{x}{\sqrt{x^2+y^2}} & x
\end{pmatrix}
\]

\[
\frac{\partial \bar{x}^\beta}{\partial x^\alpha} \frac{\partial x^\alpha}{\partial \bar{x}^\gamma} = \begin{pmatrix}
\cos \phi & -s \sin \phi & \sin \phi \\
\sin \phi & s \cos \phi & s \\
-s & 0 & 0
\end{pmatrix}
\]

and in \(\bar{x}^\alpha \) coordinates:

\[
\frac{\partial x^\alpha}{\partial \bar{x}^\beta} \frac{\partial \bar{x}^\beta}{\partial x^\gamma} = \begin{pmatrix}
\cos \phi & -s \sin \phi & \sin \phi \\
\sin \phi & s \cos \phi & s \\
-s & 0 & 0
\end{pmatrix}
\]

\[
\frac{\partial \bar{x}^\beta}{\partial \bar{x}^\alpha} \frac{\partial \bar{x}^\alpha}{\partial x^\gamma} = \begin{pmatrix}
\cos \phi & -s \sin \phi & \sin \phi \\
\sin \phi & s \cos \phi & s \\
-s & 0 & 0
\end{pmatrix}
\]

Problem 1.13

a. The 2nd rank contravariant tensor made from the direct product of two first rank contravariant tensors, \(T^{\mu\nu} = f^\mu h^\nu \), transforms as:

\[
T^{\mu\nu} = \tilde{f}^\mu \tilde{h}^\nu = \frac{\partial \tilde{x}^\mu}{\partial x^\alpha} f^\alpha \frac{\partial \tilde{x}^\nu}{\partial x^\beta} h^\beta
\]

\[
= \frac{\partial \tilde{x}^\mu}{\partial x^\alpha} f^\alpha \frac{\partial \tilde{x}^\nu}{\partial x^\beta} h^\beta
\]

\[
\tilde{T}^{\mu\nu} = \frac{\partial \tilde{x}^\mu}{\partial x^\alpha} \frac{\partial \tilde{x}^\nu}{\partial x^\beta} T^{\alpha\beta}.
\]

b. The 2nd rank covariant tensor made from the direct product of two first rank covariant tensors, \(T_{\mu\nu} = f_\mu h_\nu \), transforms as:

\[
\bar{T}_{\mu\nu} = \bar{f}_\mu \bar{h}_\nu = \frac{\partial x^\alpha}{\partial \bar{x}^\mu} \frac{\partial x^\beta}{\partial \bar{x}^\nu} f^\alpha h^\beta
\]

\[
= \frac{\partial x^\alpha}{\partial \bar{x}^\mu} \frac{\partial x^\beta}{\partial \bar{x}^\nu} f^\alpha h^\beta
\]

\[
\bar{T}_{\mu\nu} = \frac{\partial x^\alpha}{\partial \bar{x}^\mu} \frac{\partial x^\beta}{\partial \bar{x}^\nu} T_{\alpha\beta}.
\]

c. For contravariant and covariant tensors, \(f^\alpha \) and \(h_\beta \), we form \(\psi = f^\alpha h_\alpha \). \(\psi \) transforms as:

\[
\tilde{\psi} = \tilde{f}^\alpha \tilde{h}_\alpha = \frac{\partial \tilde{x}^\alpha}{\partial x^\mu} f^\mu \frac{\partial \tilde{x}^\gamma}{\partial x^\alpha} h_\gamma
\]

\[
= \frac{\partial \tilde{x}^\alpha}{\partial x^\mu} \frac{\partial x^\gamma}{\partial \bar{x}^\alpha} f^\mu h_\gamma
\]

\[
= \delta^\gamma_\mu f^\mu h_\gamma = \delta^\gamma_\gamma f^\gamma h_\gamma = \psi.
\]

So \(\psi \) transforms as \(\tilde{\psi} = \psi \), i.e. a scalar.
Problem 1.14
To show that a matrix is uninvertible, we need to show that the matrix determinant is zero. For $A_{\mu \nu}$ constructed from p_{μ}, q_{ν}, the matrix form looks like:

$$A_{\mu \nu} = \begin{pmatrix} p_1 & q_1 \\ p_2 & q_2 \end{pmatrix}$$

and the determinant of this matrix is:

$$\det A = (p_1 q_1) (p_2 q_2) - (p_1 q_2) (p_2 q_1) = 0$$

so that A is uninvertible.

Problem 1.15
a. For $f(x) = \sin(x)$, we have:

$$p = \frac{df}{dx} = \cos(x) \rightarrow x = \arccos(p).$$

From the definition of the Legendre transformation, we have:

$$g(p) = px(p) - f(p)$$
and \(f(p) = f(x(p)) = \sqrt{1 - p^2} \), so that

\[
g(p) = p \arccos(p) - \sqrt{1 - p^2}.
\]

(1.106)

b. Starting with \(g(p) = p \arccos(p) - \sqrt{1 - p^2} \), we have:

\[
x = \frac{dg}{dp} = \arccos(p) \rightarrow p = \cos(x)
\]

(1.107)

and the Legendre transform of \(g(p) \) is:

\[
h(x) = p(x) x - g(x)
\]

(1.108)

where \(g(x) = x \cos(x) - \sqrt{1 - \cos^2 x} \), so

\[
h(x) = \cos(x) x - \left(x \cos(x) - \sqrt{1 - \cos^2 x} \right) = \sin(x)
\]

(1.109)

our starting point, \(f(x) \).

Problem 1.16

Using the transformation associated with \(K(x, \vec{x}) \):

\[
p = \frac{\partial K}{\partial x} \quad \vec{p} = -\frac{\partial K}{\partial \vec{x}}
\]

(1.110)

we can set \(p = \vec{x} \) and \(\vec{p} = -x \) by taking \(K(x, \vec{x}) = x \vec{x} \). This is a canonical transformation, so \(H(\vec{x}, \vec{p}) = H(x, \vec{x}, p, \vec{p}) \):

\[
\vec{H} = \frac{\vec{x}^2}{2m} + \frac{1}{2} k \vec{p}^2.
\]

(1.111)

Problem 1.17

For \(L(x, \dot{x}) = \frac{1}{2} m \dot{x}^2 + \frac{G M m}{x} \)

a. The equation of motion is:

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = m \ddot{x} + \frac{G M m}{x^2} = 0
\]

(1.112)

giving

\[
m \ddot{x} = -\frac{G M m}{x^2}.
\]

(1.113)
b. The definition of p here is:

$$p = \frac{\partial L}{\partial \dot{x}} = m \dot{x} \tag{1.114}$$

and the Legendre transform of this L is:

$$H = p \dot{x}(p) - L(x, p) = \frac{p^2}{m} - \frac{1}{2} \frac{p^2}{m} - \frac{G M m}{x} = \frac{1}{2} \frac{p^2}{m} - \frac{G M m}{x}. \tag{1.115}$$

The two associated equations of motion are:

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m} \tag{1.116}$$

$$\dot{p} = -\frac{\partial H}{\partial x} = -\left(\frac{G M m}{x^2}\right).$$

Solving the top equation for p and inserting in the bottom we recover:

$$m \ddot{x} = -\frac{G M m}{x^2}. \tag{1.117}$$

Problem 1.18

The Lagrangian is:

$$L = \frac{1}{2} m \mathbf{v} \cdot \mathbf{v} - (q \phi - q \mathbf{v} \cdot \mathbf{A}). \tag{1.118}$$

The canonical momentum $p = \frac{\partial L}{\partial \mathbf{v}}$, so:

$$p = m \mathbf{v} + q \mathbf{A} \rightarrow \mathbf{v} = \frac{p - q \mathbf{A}}{m}. \tag{1.119}$$

Inserting this in the Legendre transform of L serves to define H:

$$H = p \cdot \mathbf{v} - L$$

$$= \frac{1}{m} p \cdot (p - q \mathbf{A}) - \frac{1}{2 m} (p - q \mathbf{A}) \cdot (p - q \mathbf{A}) + q \phi - \frac{q}{m} \mathbf{A} \cdot (p - q \mathbf{A})$$

$$= \frac{1}{m} (p - q \mathbf{A}) \cdot (p - q \mathbf{A}) - \frac{1}{2 m} (p - q \mathbf{A}) \cdot (p - q \mathbf{A}) + q \phi$$

$$H = \frac{1}{2 m} (p - q \mathbf{A}) \cdot (p - q \mathbf{A}) + q \phi. \tag{1.120}$$
Problem 1.19
We have $[H, H] = 0$. What are f^α and h_α in the infinitesimal transformation:

$$\bar{x}^\alpha = x^\alpha + \epsilon f^\alpha \quad \bar{p}_\alpha = p_\alpha + \epsilon h_\alpha,$$

when H is the generator?

We have

$$f^\alpha(x, p) = \frac{\partial H}{\partial p_\alpha}, \quad h_\alpha(x, p) = -\frac{\partial H}{\partial x^\alpha}. \quad (1.122)$$

We know from the equations of motion that

$$\frac{\partial H}{\partial p_\alpha} = \dot{x}^\alpha(t) \quad \text{and} \quad \frac{\partial H}{\partial x^\alpha} = -\dot{p}_\alpha(t), \quad (1.123)$$

so

$$\bar{x}^\alpha(t) = x^\alpha(t) + \epsilon \dot{x}^\alpha(t) \quad \text{and} \quad \bar{p}_\alpha(t) = p_\alpha(t) + \epsilon \dot{p}_\alpha(t). \quad (1.124)$$

Then the new coordinates are, to $O(\epsilon^2)$, (and hence, beyond our interest):

$$\bar{x}^\alpha(t) = x^\alpha(t + \epsilon) \quad \bar{p}_\alpha(t) = p_\alpha(t + \epsilon), \quad (1.125)$$

i.e. the transformation generated by H produces $\bar{x}(t)$ and $\bar{p}(t)$ that are $x(t)$ and $p(t)$ propagated forward in time (for $\epsilon > 0$).

Problem 1.20
The only components not specifically worked out following (1.180) involve $f_{1;\mu}$ and $f_{\mu;1}$—since $f_1 = 0$, we know that $f_{1;1} = 0$. The second remaining element is:

$$f_{1;2} + f_{2;1} = \underbrace{f_{1;2}}_{\Gamma^\sigma_{12} f_\sigma + f_{2;1} - \Gamma^\sigma_{21} f_\sigma} = 0. \quad (1.126)$$

(dropping the factor of 1/2 that comes from symmetrization, for convenience) and $\Gamma^\theta_{r\theta} = \frac{1}{r}$ (the rest are zero), so we have:

$$f_{1;2} + f_{2;1} = -\frac{1}{r} \left(r^2 f^\theta\right) + \frac{\partial}{\partial r} \left(r^2 f^\theta\right) - \frac{1}{r} \left(r^2 f^\theta\right) = 0 \quad (1.127)$$

and this becomes, after cancellations:

$$r^2 \frac{\partial}{\partial r} f^\theta = 0 \quad (1.128)$$
which tells us that \(f^\theta \) will be independent of \(r \) (as it is).
The final component is:

\[
 f_{1;3} + f_{3;1} = f_{1,3} - \Gamma_{13}^\sigma f_\sigma + f_{3,1} - \Gamma_{13}^\sigma f_\sigma, \tag{1.129}
\]

and the only non-zero connection coefficient here is \(\Gamma^\phi_{r\phi} = \frac{1}{r} \), so:

\[
 f_{1;3} + f_{3;1} = - \frac{2}{r} \left(r^2 \sin^2 \theta \ f^\phi \right) + \frac{\partial}{\partial r} \left(r^2 \sin^2 \theta \ f^\phi \right) = 0, \tag{1.130}
\]

and again, using the product rule, this gives:

\[
 r^2 \sin^2 \theta \frac{\partial}{\partial r} f^\phi = 0 \tag{1.131}
\]

indicating that \(f^\phi \) is also \(r \)-independent.

Problem 1.21

a. In Cartesian coordinates,

\[
 f_{\mu;\nu} = f_{\mu,\nu} - \Gamma^\sigma_{\mu\nu} f_\sigma = f_{\mu,\nu} \tag{1.132}
\]

since the metric has no spatial dependence:

\[
 \Gamma^\sigma_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} (g_{\rho\mu,\nu} + g_{\rho\nu,\mu} - g_{\mu\nu,\rho}) = 0. \tag{1.133}
\]

Killing’s equation then reads:

\[
 f_{\mu;\nu} + f_{\nu;\mu} = 0 = f_{\mu,\nu} + f_{\nu,\mu}. \tag{1.134}
\]

For \(\bar{x} = x + \omega \hat{\Omega} \times x \), or in index notation,

\[
 \bar{x}^\alpha = x^\alpha + \omega g^{\alpha\beta} \epsilon_\beta_{\mu\nu} \Omega^\mu x^\nu,
\]

we have

\[
 f^\alpha = g^{\alpha\beta} \epsilon_\beta_{\mu\nu} \Omega^\mu x^\nu \quad \text{and} \quad f_\alpha = \epsilon_{\alpha\mu\nu} \Omega^\mu x^\nu. \tag{1.135}
\]

Then,

\[
 f_{\alpha,\beta} = \frac{\partial f_\alpha}{\partial x^\beta} = \epsilon_{\alpha\mu\nu} \Omega^\mu \delta^\nu_\beta = \epsilon_{\alpha\beta\mu} \Omega^\mu, \tag{1.136}
\]

and finally, using the fact that \(\epsilon_{\alpha\beta\mu} = -\epsilon_{\beta\alpha\mu} \),

\[
 f_{\mu,\nu} = \epsilon_{\alpha\beta\mu} \Omega^\mu + \epsilon_{\beta\alpha\mu} \Omega^\mu = \epsilon_{\alpha\beta\mu} \Omega^\mu - \epsilon_{\alpha\beta\mu} \Omega^\mu = 0, \tag{1.137}
\]
CHAPTER 1. NEWTONIAN GRAVITY

So Killing’s equation is true and and \(f^\alpha \) is a Killing vector.

b. For \(f^\alpha \) as given in part a, we have \(J = p_\alpha f^\alpha = p_\alpha g^{\alpha\beta} \epsilon_{\beta\mu\nu} \Omega^\mu x^\nu \) and

\[
\bar{p}_\gamma = p_\gamma - \omega \frac{\partial J}{\partial x^\gamma} = p_\gamma - \omega p_\alpha g^{\alpha\beta} \epsilon_{\beta\mu\nu} \Omega^\mu \delta^\nu_\gamma
\]

\[
= p_\gamma - \omega p_\alpha g^{\alpha\beta} \epsilon_{\beta\mu\gamma} \Omega^\mu.
\]

(1.139)

Then,

\[
\bar{p}_\alpha g^{\gamma\nu} \bar{p}_\nu = \left(p_\gamma - \omega p_\alpha g^{\alpha\beta} \epsilon_{\beta\mu\gamma} \Omega^\mu \right) \left(p^\gamma - \omega p_\alpha g^{\alpha\beta} g^{\gamma\rho} \epsilon_{\beta\mu\rho} \Omega^\mu \right)
\]

\[
= p_\gamma p^\gamma - \omega \left[p_\gamma p_\alpha g^{\alpha\beta} g^{\gamma\rho} \epsilon_{\beta\mu\rho} \Omega^\mu + p^\gamma p_\alpha g^{\alpha\beta} \epsilon_{\beta\mu\gamma} \Omega^\mu \right] + O(\omega^2)
\]

\[
= p_\gamma p^\gamma - \omega \left[p^\rho p^\beta \epsilon_{\beta\mu\rho} \Omega^\mu + p^\gamma p^\beta \epsilon_{\beta\mu\gamma} \Omega^\mu \right] + O(\omega^2)
\]

the product of symmetric and antisymmetric tensors is zero, so each term in the bracket dies, and

\[
= p_\gamma g^{\gamma\alpha} p_\alpha + O(\omega^2).
\]

(1.140)

For \(r^2 \),

\[
\tilde{r}^2 = \bar{x}^\alpha g_{\alpha\beta} \bar{x}^\beta = \left(x^\alpha + \omega g^{\alpha\beta} \epsilon_{\beta\mu\nu} \Omega^\mu x^\nu \right) \left(x_\alpha + \omega \epsilon_{\beta\mu\nu} \Omega^\mu x^\nu \right)
\]

\[
= x^\alpha x_\alpha + \omega \left[x^\alpha x^\nu \epsilon_{\alpha\mu\nu} \Omega^\mu + g^{\alpha\beta} \epsilon_{\beta\mu\gamma} \Omega^\mu x^\nu x_\alpha \right] + O(\omega^2)
\]

\[
= x^\alpha x_\alpha + O(\omega^2).
\]

(1.141)

It follows that,

\[
U(\tilde{r}) = U(r) + O(\omega^2).
\]

(1.142)

Thus,

\[
\tilde{H} = \frac{1}{2m} \bar{p}_\alpha \bar{p}^\alpha + U(\tilde{r}) = \frac{1}{2m} p_\alpha p^\alpha + U(r) + O(\omega^2) = H + O(\omega^2).
\]

(1.143)

Problem 1.22

If the target is

\[
\bar{x}^\alpha = x^\alpha + \epsilon F^\alpha(p)
\]

(1.144)

then we must have:

\[
\frac{\partial J(x, p)}{\partial p_\alpha} = F^\alpha.
\]

(1.145)
Whatever J is, it cannot depend on x, by assumption, since $\bar{p}_\beta = p_\beta - \epsilon \frac{\partial J}{\partial x^\alpha}$, and we are given $\bar{p}_\beta = p_\beta$. The Poisson bracket of H with J reads:

$$[H, J] = \frac{\partial H}{\partial x^\alpha} \frac{\partial J}{\partial p_\alpha} - \frac{\partial H}{\partial p_\alpha} \frac{\partial J}{\partial x^\alpha}$$

(1.146)

and the second term is zero, so we must have:

$$\frac{\partial H}{\partial x^\alpha} F^\alpha(p) = 0.$$

(1.147)

Without an explicit relationship between x^α and p_α, there is no way to make this zero beyond the geometrical requirement: $\nabla H \cdot F = 0$. So, orthogonality is required in this case. In one dimension, this is unavailable, and we must have $F = 0$, then $J = \text{constant}$ and there is no transformation.

Problem 1.23

Starting with

$$L = \frac{1}{2} m v_j v^j - (q \phi - q v_j A^j),$$

(1.148)

we have the Euler-Lagrange equations:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial v_j} \right) - \frac{\partial L}{\partial x^j} = 0.$$

(1.149)

Since we are in Cartesian coordinates, there is no distinction between up and down indices, and the above reads:

$$m \ddot{v}_j + q \frac{\partial A^j}{\partial x^k} v_k + q \frac{\partial \phi}{\partial x^j} - q v_k \frac{\partial A^k}{\partial x^j} = 0.$$

(1.150)

We can write this as

$$m \ddot{x}^j = -q \frac{\partial \phi}{\partial x^j} + q v_k \left(\frac{\partial A^k}{\partial x^j} - \frac{\partial A^j}{\partial x^k} \right).$$

(1.151)

Note, either by working out components, or using the Levi-Civita form for $v \times (\nabla \times A)$:

$$\epsilon_{ijk} v_j \left(\epsilon_{k\ell m} \frac{\partial}{\partial x^\ell} A^m \right) = \epsilon_{ijk} \epsilon_{k\ell m} v_j \frac{\partial}{\partial x^\ell} A^m$$

$$= (\delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell}) v_j \frac{\partial}{\partial x^\ell} A^m$$

$$= v_j \frac{\partial A_j}{\partial x^i} - v_j \frac{\partial A^i}{\partial x^j}.$$

(1.152)
that the second term in (1.151) can be written $q \mathbf{v} \times (\nabla \times \mathbf{A})$, so that in vector form, with $\mathbf{E} = -\nabla \phi$, and $\mathbf{B} = \nabla \times \mathbf{A}$, our equations of motion read:

$$ma = q \mathbf{E} + q \mathbf{v} \times \mathbf{B} \quad (1.153)$$
as always.

Problem 1.24

We have a function $L(x, \dot{x}, \ddot{x})$, and we want to vary w.r.t. x to find the equations of motion. The action is:

$$S[x] = \int L(x, \dot{x}, \ddot{x}) \, dt \quad (1.154)$$

so that

$$\delta S \equiv S[x + \eta] - S[x] = \int (L(x + \eta, \dot{x} + \dot{\eta}, \ddot{x} + \ddot{\eta}) - L(x, \dot{x}, \ddot{x})) \, dt
\approx \int \left(\frac{\partial L}{\partial x} \eta + \frac{\partial L}{\partial \dot{x}} \dot{\eta} + \frac{\partial L}{\partial \ddot{x}} \ddot{x} \right) \, dt. \quad (1.155)$$

We can use integration by parts if we assume that both η and $\dot{\eta}$ vanish at the endpoints of the trajectory — this is reasonable if we imagine specifying the initial and final velocity of the particle along with the initial and final position. After integration by parts, we have:

$$\delta S = \int \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{x}} \right) \right) \eta \, dt, \quad (1.156)$$

and for $\delta S = 0$ to hold for all perturbing trajectories η, we have:

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{x}} \right) = 0. \quad (1.157)$$

For $L = \epsilon a^2 + \frac{1}{2} m v^2 - U(x)$, the above gives:

$$-U'(x) - m \ddot{x} + 2 \epsilon (\dddot{x}) s = 0. \quad (1.158)$$

In order for $\epsilon \dddot{x}$ to have units of force, ϵ must have units kg s2.

Problem 1.25

The Lagrangian is the Legendre transform of the Hamiltonian, we are replacing p with $\dot{x} = \frac{\partial H}{\partial p} = p/m + \alpha x$, so that

$$p = m (\dot{x} - \alpha x). \quad (1.159)$$
From the definition of the Legendre transform, we have:

\[
L = p \dot{x} - H = m (\dot{x} - \alpha x) \dot{x} - \left[\frac{1}{2} m (\dot{x} - \alpha x)^2 + \alpha x m (\dot{x} - \alpha x) \right] \\
= \frac{1}{2} m (\dot{x} - \alpha x)^2 .
\]

The associated equations of motion are:

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = \frac{d}{dt} (m (\dot{x} - \alpha x)) + m \alpha (\dot{x} - \alpha x) = 0
\]

so that

\[
m \ddot{x} - m \alpha^2 x = 0 \quad \rightarrow \quad m \ddot{x} = m \alpha^2 x .
\]

(1.161)
(1.162)
Chapter 2

Relativistic Mechanics

Problem 2.1

a. If we take the trigonometric functions to hyperbolic trigonometric functions, we can use the rotation result directly:

\[\bar{x} = \cosh \eta x + \sinh \eta c t \]
\[\bar{t} = \sinh \eta x + \cosh \eta c t. \]

(2.1)

Then we have:

\[d\bar{x}^2 = \cosh^2 \eta dx^2 + 2 \cosh \eta \sinh \eta dx \, c \, dt + \sinh^2 \eta c^2 dt^2 \]
\[c \, d\bar{t} = \sinh^2 \eta dx^2 + 2 \cosh \eta \sinh \eta dx \, c \, dt + \cosh^2 \eta c^2 dt^2. \]

(2.2)

Subtract the bottom from the top, and we have:

\[d\bar{x}^2 - c^2 d\bar{t}^2 = dx^2 - c^2 dt^2 \]

(2.3)

using \(\cosh^2 \eta - \sinh^2 \eta = 1 \), so the invariant requirement holds.

b. The origin of \(\bar{O} \) is at \(\bar{x} = 0 \), from which we learn via (2.1), that:

\[\sinh \eta = -\frac{x}{c t} \cosh \eta, \]

(2.4)

and the \(x \) location of the origin is \(x = v t \), so

\[\sinh \eta = -\frac{v}{c} \cosh \eta. \]

(2.5)

Squaring both sides, and replacing \(\sinh^2 \eta = \cosh^2 \eta - 1 \), we have

\[\cosh^2 \eta - 1 = \frac{v^2}{c^2} \cosh^2 \eta \rightarrow \cosh \eta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma \]

(2.6)